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a b s t r a c t

A competitive adsorption isotherm model is derived for binary mixtures of components characterized by
single component isotherms which are second-order truncations of higher order equilibrium models sug-
gested by multi-layer theory and statistical thermodynamics. The competitive isotherms are determined
using the ideal adsorbed solution (IAS) theory which, in case of complex single component isotherms,
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does not generate explicit expressions to calculated equilibrium loadings and causes time consuming
iterations in simulations of adsorption processes. The explicit model derived in this work is based on an
analysis of the roots of a cubic polynomial resulting from the set of IAS equations. The suggested ther-
modynamically consistent and widely applicable competitive isotherm model can be recommended as
a flexible tool for efficient simulations of fixed-bed adsorber dynamics.
angmuir isotherm
uadratic isotherm

. Introduction

The competitive adsorption isotherms are the most essential
nformation which should be provided to design and optimize
eparation processes based on selective adsorption [1,2]. Still the
ost reliable way to obtain isotherms is to perform experiments

3]. Unfortunately, the experimental determination of competitive
sotherms is difficult and time consuming. Therefore, competitive
sotherms are typically predicted using thermodynamic mod-
ls exploiting knowledge about the single component isotherms,
hich can be easier measured. One of the most successful and
idely applied models is the ideal adsorbed solution (IAS) theory

4]. Although real systems can deviate from ideality [5], the ther-
odynamically consistent competitive isotherms predicted by the

AS theory are very useful in simulating, designing and optimizing
dsorption processes.

Explicit forms of competitive isotherm models based on the IAS

heory are available only for a few relatively simple single com-
onent isotherm models (e.g. the Henry and Langmuir equations
4]). For more complex single component models explicit solutions
f the IAS theory are not available and, therefore, the competi-
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tive isotherms have to be calculated numerically using iterative
procedures.

In order to extend the library of the available thermody-
namically consistent competitive isotherm models, the main task
of this theoretical study is to find an explicit solution for the
case of second-order truncations of single component isotherms
(“quadratic isotherms”), which are suggested by various theoret-
ical concepts and which are more flexible and, thus, often more
accurate. These second-order models are e.g. capable to describe
frequently observed inflection points in the isotherm courses.

In order to validate the derived explicit competitive isotherm
model, predicted equilibrium loadings will be compared with
results of corresponding numerical solutions. Additionally, the
obtained isotherm model will be used in numerical simulations of
fixed-bed dynamics, again in comparison with simulations based
on solving iteratively the set of IAS equations.

2. Single component adsorption isotherms

The most often used nonlinear single component adsorption
isotherm model is the Langmuir model [1,3,6] which correlates the
fluid phase concentrations C0

i
of a component i and the correspond-
ing equilibrium loading of the solid phase, Q 0
i

, as follows:

Qi
0(Ci

0) = Qsat,i
biCi

0

1 + biCi
0

(1)

http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:seidel-morgenstern@mpi-magdeburg.mpg.de
dx.doi.org/10.1016/j.chroma.2010.02.006
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Nomenclature

A defined in Eq. (13a) [g/l]
bi,1 parameter of the adsorption isotherm model, Eq. (4)

[l/g]
bi,2 parameter of the adsorption isotherm model, Eq. (4)

[l2/g2]
B defined in Eq. (13b) [g/l]
C defined in Eq. (13c) [g/l]
Ci concentration of component i in the liquid phase

[g/l]
C0 single solute concentration [g/l]
C0,fic hypothetical single solute concentration [g/l]
Cinj injection concentration [g/l]
Cmix liquid phase concentration in mixture [g/l]
D defined in Eq. (13d) [g/l]
Dapp apparent axial dispersion coefficient [m2/s]
f* defined in Eq. (15) [g/l]
F cubic polynomial, defined in Eq. (12) [g/l]
l column length [m]
N number of components present in a mixture
Np number of theoretical plates, Eq. (18)
Q concentration in the solid phase [g/l]
Qsat,i saturation capacity (parameter of the adsorption

isotherm model) [g/l]
Qtot total loading [g/l]
Qmix loading in mixture [g/l]
R universal gas constant [J/g K]
Sads adsorbent surface [m2]
t time coordinate [s]
T temperature [K]
u linear velocity [m/s]
Vads adsorbent volume [m3]
Vinj injection volume [l]
x space coordinate [m]
z molar fraction
z* defined in Eq. (15)

Greek symbols
� defined in Eq. (14)
ˇ defined in Eq. (14), [l/g]
� defined in Eq. (14), [l/g]
ı defined in Eq. (15)
� running variable in Eq. (8), corresponding to single

solute concentration [g/l]
ε total porosity
�0 RTVads/Sads, Eq. (8) [J m/g]
�* defined in Eq. (15)

t
t
t
a
m
u

m
r
p
m
n

� defined in Eq. (2)
� spreading pressure, Eq. (8) [J/m2]

In this equation Qsat,i is the saturation (maximum) capacity of
he solid phase and bi is a positive temperature dependent parame-
er quantifying the adsorption energy. This classical model assumes
hat each adsorption site is energetically equivalent and is avail-
ble only for one molecule. Molecular interactions between the
olecules adsorbed are neglected. Eq. (1) accounts only for loadings

p to the formation of so-called mono-layers.
Experimentally observed isotherms are often characterized by
ore complex isotherm shapes, which can not be described accu-
ately by Eq. (1) [7]. A typical feature is the occurrence of inflection
oints in the isotherm courses, which can be caused, e.g. by
ulti-layer formation, the presence of energetically heteroge-

eous adsorbent surfaces, lateral interactions between adsorbed
217 (2010) 2132–2137 2133

molecules and capillary condensation phenomena. In order to
describe more complex isotherms shapes, various models have
been suggested. A very general and flexible model was suggested
by Hill [8]. It results from classical concepts of statistical ther-
modynamics applied to adsorption equilibria. The model can be
expressed in the following special form of a Mth order Padé approx-
imant [9]:

Q 0
i (C0

i ) = Q ∗
sat,iC

0
i

[
d�i(C0

i
)/dC0

i

]
�i(C0

i
)

with

�i(C
0
i ) = 1 +

M∑
j

bi,j(C
0
i )

j
(2)

The bi,j are positive parameters quantifying varies types of
interaction energies. For M = 1 Eq. (2) reduces to Eq. (1). For the
second-order approximation (M = 2) holds:

�i(C
0
i ) = 1 + bi,1C0

i + bi,2C02
i (3)

This leads to the following well known quadratic isotherm
model [1,10,11].

Q O
i (C0

i ) =
Q ∗

sat,i
C0

i
(bi1 + 2bi2C0

i
)

1 + bi1C0
i

+ bi2C02
i

(4)

Eq. (4) is quite flexible and capable of describing inflection points
in the isotherm courses. The same quadratic isotherm model given
by Eq. (4) can be also derived exploiting the extended BET-theory
[11] or using a lattice model [12]. If the liquid phase concentration
approaches infinity, Eq. (4) predicts that the solid phase concentra-
tion reaches a saturation value Qsat,i = 2Q ∗

sat,i
.

3. Derivation of competitive adsorption isotherm model
for a binary system

A well-known and widely used extension of the Langmuir model
(Eq. (1)) to the case of competitive adsorption of N components in
a mixture is [1,2]:

Q mix
i (Cmix

1 , . . . , Cmix
N ) = Qsat,i

biC
mix
i

1 +
∑N

k=1bkCmix
k

i = 1, N (5)

This equation predicts the loadings of a component i in the mix-
ture, Q mix

i
, as a function of the fluid phase concentrations Cmix

k
. It is

thermodynamically consistent only if the saturation capacities are
the same for all components [13], i.e.:

Q̄sat = Qsat,i i = 1, N (6)

The most successful and often applied approach to derive
competitive isotherms from single component data is the ideal
adsorbed solution (IAS) theory. This theory was initially developed
by Myers and Prausnitz [4] for gas adsorption and extended to treat
adsorption from dilute liquid solutions by Radke and Prausnitz [14].
An important advantage of the IAS theory is that it provides for any
set of single component isotherms thermodynamically consistent
competitive isotherms.

Using the framework of IAS theory, for a N component
mixture, characterized by the N independent fluid phase concen-
trations Cmix, . . . , Cmix, the following 2N + 1 equations have to be
1 N
solved simultaneously to determine the 2N + 1 dependent variables
C0,fic

1 , . . . , C0,fic
N , Q mix

1 , . . . , Q mix
N , Q mix

tot [4,14]:

�i(Ci
0,fic) = �i+1(C0,fic

i+1 ) i = 1, N − 1 (7a)
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N

k=1

Ck
mix

C0,fic
k

= 1 (7b)

N

k=1

Q mix
k

Q 0
k

(C0,fic
k

)
= 1 (7c)

Q mix
i

Q mix
tot

= Cmix
i

C0,fic
i

i = 1, N (7d)

Because of Eq. (7d), Eq. (7c) can be replaced by:

1

Q mix
tot

=
N∑

k=1

Cmix
k

C0,fic
k

Q 0
k

(C0,fic
k

)
(7e)

An important tool of the theory is the Gibbs adsorption isotherm
hich quantifies the two-dimensional spreading pressure (�)
resent in the adsorbed phase (Eq. (7a)). The C0,fic

i
are hypothetical

fictive) concentrations of a component i in a hypothetical single
omponent system, which generate the same spreading pressure
s the mixture does. The Q mix

i
are the equilibrium loadings of com-

onent i to be determined and Q mix
tot is the total equilibrium loading.

The spreading pressures of a single component i for the fictive
oncentration C0,fic

i
can be determined from the single component

ibbs adsorption equation as [4,14]:

i(C
0,fic
i

) = �0

C0,fic
i∫
0

Q 0
i

(�)

�
d� i = 1, N (8)

Hereby �0 substitutes RTVads/Sads and Q 0
i

stands for the single
omponent isotherm model.

Provided Eq. (6) holds, the set of Eqs. (7) and (8) can be solved
nalytically for the Langmuir single component isotherms (Eq. (1)).
he result is the expression given by Eq. (5). Solving Eqs. (7) and (8)
s more complex for almost all other single component isotherm

odels. If Eq. (6) does not hold, already in case of applying Eq. (1)
umerical methods must be used.

Below we present an explicit competitive isotherm model for
he two components of a binary mixture using the IAS theory and
q. (4) for the single solute isotherms. In addition it is assumed that
q. (6) holds. In this case the spreading pressure expression, Eq. (8),
rovides:

i(C
0,fic
i

) = �0Q̄sat ln[1 + bi,1C0,fic
i

+ bi,2(C0,fic
i

)
2
] i = 1, 2 (9)

Using Eqs. (7a) and (9) leads to:

+ b1,1
Cmix

1
z1

+ b1,2

[
Cmix

1
z1

]2

= 1 + b2,1
Cmix

2
z2

+ b2,2

[
Cmix

2
z2

]2

(10)

Hereby, following a suggestion made recently [15], adsorbed
hase molar fractions zi have been introduced for the hypothetical
oncentrations C0,fic

i
(see Eq. (7d)):

i = Cmix
i

C0,fic
i

i = 1, 2 with z2 = 1 − z1 (11)

Eq. (10) can be reformulated as F = 0 for the following cubic
olynomial F with (x, y) ≡ (C1

mix, C2
mix) ∈ �2+ and z ≡ z1:

(x, y, z) = A(x, y)z3 + B(x, y)z2 + C(x, y)z + D(x, y) (12)
with

(x, y) = ˛x + y > 0 (13a)

(x, y) = x(ˇx − 2˛) − y(1 + �y) (13b)
1217 (2010) 2132–2137

C(x, y) = x(˛ − 2ˇx) (13c)

D(x, y) = ˇx2 ≥ 0 (13d)

and the parameters

˛ = b1,1

b2,1
> 0, ˇ = b1,2

b2,1
≥ 0, � = b2,2

b2,1
≥ 0

for bi,1 > 0, bi,2 ≥ 0 i = 1, 2 (14)

The zero of F in [0,1] solving Eq. (10) provides the z1 we are
looking for. In Appendix A, following [16], is given the derivation
of this unique zero in [0,1] designated as zII. The derived analytical
expression is:

z1 = zII ≡ zII(x, y) = zII(Cmix
1 , Cmix

2 )

= z∗(x, y) + 2ı(x, y) cos
(

�∗(x, y) + 4�

3

)
∈ [0, 1] (15, A5b)

with

z∗(x, y) = −B(x, y)
[3A(x, y)]

ı ≡ ı(x, y) = [B2(x, y) − 3A(x, y)C(x, y)]
[3A(x, y)]

1/2

�∗ ≡ �∗(x, y) = 1
3

arccos
(

− f∗(x, y)
2A(x, y)ı3(x, y)

)
∈

[
0,

�

3

]

f∗(x, y) = F(x, y, z∗(x, y))

Using this expression for z1(Cmix
1 , Cmix

2 ) = zII and Eq. (7e), the
equilibrium loadings Q mix

i
can be determined as follows:

Q mix
i (C1

mix, C2
mix) = Q mix

tot zi =
[

z1

Q 0
1 (C0,fic

1 )
+ 1 − z1

Q 0
2 (C0,fic

2 )

]−1

zi

i = 1, 2 (16a)

with

C0,fic
1 = C1

mix

z1
, C0,fic

2 = C2
mix

(1 − z1)
(16b)

This solution allows direct calculation of competitive IAS
isotherms involving two second-order single component isotherm
models Q 0

1 (C1
0) and Q 0

2 (C2
0). It is also valid for binary mixtures

involving a combination of first and second-order truncations
(Langmuir and quadratic isotherms) and can be efficiently applied
in simulations of fixed-bed dynamics, where typically a large
amount of equilibrium calculations has to be performed.

4. Application of the derived competitive isotherm model

4.1. Equilibrium loadings

For illustration and also to check the derived analytical compet-
itive adsorption isotherm equation, the following parameters were
used in the single solute isotherm model (Eq. (4)): Q ∗

sat,1 = Q ∗
sat,2 =

5 g/l, b1,1 = 1 l/g, b1,2 = 2 l2/g2, b2,1 = 2 l/g, b2,2 = 3 l2/g2. In addition to
applying Eqs. (13)–(16), numerical solutions of Eqs. (7) and (8) were

calculated using three methods implemented in Matlab [17], i.e.
the Gauss–Newton, the Levenberg–Marquardt and Trust-Region-
Dogleg methods. A general survey regarding these well established
nonlinear least-square methods is given in [18]. Details concerning
the Levenberg–Marquardt method can be found in [19,20], while
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Fig. 1. Comparison of the derived analytical solution (Eqs. (13)–(16)) and results of
numerical calculations solving Eqs. (7) and (8). The single component isotherms
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Np =
2D̄app

(18)

In this equation Np stand for the number of theoretical plates,
which is typically applied to evaluate the efficiency of chromato-
graphic columns, and l for the column length.

Fig. 2. Comparison of the derived analytical solution (Eqs. (13)–(16)) and results of
solid lines) correspond to Eq. (4) and the parameters given in the text. Black-
omponent 1, grey-component 2, squares and circles—derived analytical solution,
otted lines—numerical solutions (1:1 mixtures).

n overview regarding the Trust-Region-Dogleg method is given in
21].

In Fig. 1 are presented the single solute isotherms of the two
omponents as solid lines. The existence of the inflection points in
he courses of these two isotherms is hardly visible in this pre-
entation. To illustrate this feature better plots of the isotherm
erivatives dQ/dC vs. C or of Q/C vs. C are more suitable. For the sake
f brevity they are not given here. Selected competitive isotherms
re given in Fig. 1 for 1:1 mixtures in the liquid phase, i.e. Cmix

1 =
mix
2 . The expected reduction of loadings in the mixture case can be
learly seen. Of importance for the purpose of this study is the fact
hat the squares and circles, corresponding to the analytical solu-
ion, coincide perfectly with the numerical results shown as dotted
ines. Regarding the latter there were no significant differences
ound for the three methods applied. However, the Gauss–Newton

ethod was not able to provide for some pairs of Cmix
1 and Cmix

2 the
olution with the default parameters of the solver.

The derived analytical solution can be also reduced to describe
he case, where one of the isotherms is only of the first-order
ype. The combination of first-order (Langmuir) and second-order
quadratic, BET) types of single component isotherms was analysed
n detail in [22]. Results of using Eqs. (13)–(16) were compared
gain with corresponding numerical solutions for such a situa-
ion. The single component isotherm parameters used are related
o the adsorption of Tröger’s base enantiomers on microcrys-
alline cellulose triacetate with ethanol as solvent. In [23] this
ystem was studied theoretically and experimentally. It was found
hat the isotherm of the (−)-enantiomer, which elutes first, is
f the Langmuir type (Eq. (1)), while the isotherm of the (+)-
nantiomer has an inflection point and can be modelled with the
uadratic isotherm model (Eq. (4)). The single solute isotherm
odel parameters used here were taken from the parameters fit-

ed in [23] to experimental data (just the saturation capacities were
lightly modified to guarantee consistency): Qsat,1 = Q̄sat = 20 g/l,
1,1 = 0.157 l/g, b1,2 = 0 l2/g2, Q ∗

sat,2 = Q̄sat/2 = 10 g/l, b2,1 = 0.948 l/g,

= 1.072 l2/g2. The obtained isotherms are presented in Fig. 2.
2,2
here is a strong reduction in the equilibrium loadings of the (−)-
nantiomers in 1:1 mixtures, which is due to the relatively large
eparation factor and also the pronounced inflection point in the
ourse of the single component isotherm of the (+)-enantiomer.
217 (2010) 2132–2137 2135

As in the first example no differences were found between the
competitive isotherms calculated analytically and numerically. The
presence of inflection points is known to be the reason for unusual
peak shapes if efficient chromatographic columns are applied [24].
To investigate this phenomenon the isotherms of this second
example were applied within a model capable to predict column
dynamics.

4.2. Application of the derived competitive isotherm model in
fixed-beds models

The equilibrium-dispersive model [1] as one of the most fre-
quently applied model was used to predict the development of
concentration profiles in fixed-beds. This model assumes isother-
mal conditions and that the liquid and solid phases are permanently
and at all local positions in equilibrium. Radial gradients are
neglected and it is further assumed that all band broadening contri-
butions (due to, e.g. axial dispersion and finite rates of mass transfer
processes) can be lumped into an apparent axial dispersion coef-
ficient. The corresponding mass balance for a component i in a N
component mixture is [1]:

∂Cmix
í

∂t
+ 1 − ε

ε
· ∂Q mix

i
(Cmix

1 , . . . , Cmix
N )

∂t
+ u

∂Cmix
i

∂x

= Dapp,i

∂2Cmix
i

∂x2
, i = 1, 2, . . . , N (17)

where the Cmix are again the concentrations in the fluid phase,
the Qmix the corresponding equilibrium concentrations in the solid
phase, t the time coordinate and x is the space coordinate. Further,
ε is the total column porosity, u the interstitial fluid phase veloc-
ity and Dapp the apparent axial dispersion coefficient. For efficient
columns (small Dapp,i values) and similar dispersion behaviour of
all components (D̄app = Dapp,i) can be assumed [1]:

ul
numerical calculations solving Eqs. (7) and (8). Single component isotherms (solid
lines) follow Eq. (1) (component 1, (−)-enantiomer, black) and Eq. (4) (compo-
nent 2, (+)-enantiomer, grey), respectively, for the parameters given in the text.
Squares and circles—derived analytical solution, dotted lines—numerical solutions
(1:1 mixtures).
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Suitable boundary conditions valid for fixed-bed adsorption
ave been suggested by Dankwerts [25]. Analytical solutions of Eq.
17) can be derived only for linear adsorption isotherms. Otherwise
umerical methods must be applied. In this study a finite difference
ethod with forward-in-space and backward-in-time approxima-

ions [26] was used, combined with both the analytical solution for
he local equilibrium (Eqs. (13)–(16)) and the numerical solution
f Eqs. (7) and (8) The technique is based on solving efficiently a
educed form of Eq. (16) (setting the right-hand side to zero) on a
oarse grid. The following expression for the liquid phase concen-
ration of a component i at the space position n + 1 and the time
osition j represents the scheme:

j
i,n+1=Cj

i,n
− 
x

u
t
[Cj

i,n
−Cj−1

i,n
+1−ε

ε
(Q j

i,n
−Q j−1

i,n
)] i = 1, N (19)

The 
x and 
t are the space and time increments, respectively,
hosen in a way that numerical and physical dispersions match [26].
he Courant–Friedrichs–Lewy convergence condition provides a
imit for the Courant number acou in order to assure stability of
he scheme [27]:

cou = u

t


x
≥ 1 (20)

Although the described numerical method (as also other alter-
atives) is relatively fast using modern computers, there is still

significant amount of computation time needed if the equilib-

ium loadings of the compounds involved are not given via explicit
xpressions. To demonstrate the potential of the derived analytical
olutions of the IAS theory, elution profiles were calculated for the
sotherms identified for the Tröger’s base enantiomers dissolved

ig. 3. Elution profiles predicted with the equilibrium-dispersive model using the isothe
aried parameter was the injection volume: (a) 6 ml, (b) 8 ml, (c) 10 ml and (d) 12 ml. Sol
and 2. Hardly to distinguish: black line—numerical solution of equilibrium model, grey
1217 (2010) 2132–2137

in ethanol in contact with microcrystalline cellulose triacetate. As
in [23] the following parameters were used: a column length of
l = 25 cm, an internal column diameter of 4.6 mm, a total column
porosity of ε = 0.66, number of theoretical plates NP = 138, volumet-
ric flow-rate of 0.5 ml/min, injection concentrations Cinj

1 = Cinj
2 =

1.5 g/l. In four calculations the injection volume was increased step-
wise (Vinj = 6, 8, 10 and 12 ml).

Fig. 3a–d illustrate elution profiles for both enantiomers
calculated with acou = 2.3 as well as the corresponding total con-
centration profiles. Only very small (in the figures hardly to detect)
discrepancies were found between the profiles generated using
the analytical and numerical solutions of the IAS isotherm model.
However, the times required for these simulations differed sig-
nificantly. On an ordinary PC the calculation of an elution profile
using Eqs. (13)–(16) took less than 2 s, while the numerical cal-
culation required significantly more time (several minutes up to
hours, depending on the method used and the starting values
provided).

The elution profiles shown in Fig. 3 for this series of volume
overloading reveal the strong impact of the inflection point in
the isotherm of the longer retained second component (the (+)-
enantiomer of Tröger’s base) on the band shapes. The courses of the
desorption branches of the second component clearly reveal the
dispersed (Langmuirian) behaviour for concentrations above the
isotherm inflection point followed by a shock for lower concentra-

tions (anti-Langmuirian behaviour). The competition between the
two components leads to effluent concentrations of the first elut-
ing component (the (−)-enantiomer) clearly above the injection
concentration.

rm parameters underlying Fig. 2 and the additional parameters given in the text.
id line—total concentration; dashed and dotted lines (partly hidden)—components
line—analytical equilibrium model (Eqs. (13)–(16)).
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It should be finally mentioned that the course of predicted elu-
ion profiles will be of course also influenced by the fixed-bed model
sed and the kinetic parameters included. For models more detailed
hen the equilibrium-dispersive model, the application of explicit
sotherm expressions can be computationally even more beneficial
han for the case presented here for illustration.

. Conclusions

An explicit adsorption isotherm model was derived for binary
ixtures using the IAS theory. The model is applicable for compo-

ents characterized by second-order single component isotherms.
qs. (13)–(16) allow for rapid and thermodynamically consistent
alculation of the concentrations in the solid phase without requir-
ng numerical methods. The solution derived can be implemented
asily in any fixed-bed model reducing there significantly the
omputation time. Due to its flexibility it can be very helpful in
esigning and optimizing various types of adsorption processes.
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ppendix A.

Here will be given more details on the derivation of the obtained
eneral isotherm model following [16]. We show that the polyno-
ial F(x,y,z) (Eq. (12)) possesses for (x, y) ∈ �2+ three real simple

eros

I(x, y) ≤ 0 < zII(x, y) < 1 ≤ zIII(x, y) (A1)

If we define the point of symmetry of the cubic F as:

(z∗(x, y), f∗(x, y)) with z∗(x, y) = −B(x, y)
[3A(x, y)]

,

f∗(x, y) = F(x, y, z∗(x, y)) (A2)

nd introduce the positive

≡ ı(x, y):= [B2(x, y) − 3A(x, y)C(x, y)]
[3A(x, y)]

1/2

(A3)

nd the angle

∗ ≡ �∗(x, y):=1
3

arccos
(

− f∗(x, y)
2A(x, y)ı3(x, y)

)
∈

[
0,

�

3

]
(A4)

hen the zeros of F are given by

I ≡ zI(x, y) = z∗(x, y) + 2ı(x, y) cos
(

�∗(x, y) + 2�

3

)
≤ 0, (A5a)

II ≡ zII(x, y) = z∗(x, y) + 2ı(x, y) cos
(

�∗(x, y) + 4�

3

)
∈ [0, 1] ,

(A5b)

III ≡ zIII(x, y) = z∗(x, y) + 2ı(x, y) cos(�∗(x, y)) ≥ 1 (A5c)

ith zI <0 if and only if ˇ >0 and zIII >1 if and only if � >0. The zero
I vanishes identically for ˇ = 0, the zero zIII is identically equal to 1
or � = 0.
roof. Note first that A is always positive. One has in �2+

(x, y, 0) = +ˇx2 ≥ 0, F(x, y, 1) = −�y2 ≤ 0, (A6)

d

dz
F(x, y, 0) = C(x, y) = x(˛ − ˇx) (A7a)

[
[
[
[

[
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and

d

dz
F(x, y, 1) = 3A(x, y) + 2B(x, y) + C(x, y) = y(1 − 2�y) (A7b)

In case ‘ˇ >0, � >0’ Eq. (A6) implies Eq. (A1) with strict inequal-
ities. In case ‘ˇ = 0, � >0’ Eq. (A6) and (d/dz)F(x, y, 0) = ˛x > 0 (Eq.
(A7a)) lead to Eq. (A1) with zI = 0 < zII < 1 ≤ zIII. In case ‘ˇ >0, �
>0’ Eq. (A6) and (d/dz)F(x, y, 1) = y > 0 (Eq. (A7b)) yield Eq. (A1)
with zI < 0 < zII < 1 = zIII. So we arrive in case ‘ˇ = 0, � = 0’ at Eq.
(A1) with zI = 0 < zII < 1 = zIII.

These three simple zeros imply the existence of a strict local
maximum (taken at z = z∗ − ı and of a strict local minimum (taken
at z = z∗ + ı) with values:

F(x, y, z∗ − ı(x, y)) = f∗(x, y) + h(x, y) > 0, (A8a)

F(x, y, z∗ + ı(x, y)) = f∗(x, y) − h(x, y) < 0 (A8b)

for h(x, y):=2A(x, y)ı3(x, y) implying −1 ≤ −f∗(x, y)/h(x, y) ≤ +1.
Thereby, �* is well-defined by Eq. (A4) with:

cos(�∗) ∈
[

1
2

, 1
]

, cos
(

�∗ + 2�

3

)
∈

[
−1, −1

2

]
and

cos
(

�∗ + 4�

3

)
∈

[
−1

2
,

1
2

]
Thus, Eqs. (A5a)–(A5c) follow from the substitution of z =

z∗(x, y) + 2ı(x, y) cos � into F(x,y,z) = 0 since

F(x, y, z∗(x, y)) + 2ı(x, y) cos(�)

= h(x, y)[4 cos3 � − 3 cos �] + f∗(x, y)

= h(x, y) cos(3�) + f∗(x, y) !=0 (A9)

can be rewritten as

cos(3�) = − f∗(x, y)
h(x, y)

(A10)
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